IN TANK-COOLERS (WATER COOLED)

Options

SAE or BSPF connections available

Internal oil flow bypass-relief (Surge-Cushion®) Surge-Cushion is a registered trademark.

The Surge-Cushion® is a patented protective device designed to internally bypass a portion of the oil flow during cold start conditions, or when sudden flow surges temporarily exceed the maximum flow allowed for a given cooler. This device may replace an external bypass valve, but it is not intended to bypass the total oil flow.

Model	A	В	C	D NPT or SAE	D BSPF	E	F	G	H	J NPT or BSPF	J Sae	K NPT or BSPF	Q	R	T1	T2	W
TMWC001	8.58	6.75	2.55	1.28	1.52	1.59	1.12	2.44	.50	3/4"	#12	³ /8"	6	5.60	2.25	.79	.53
TMWC002	18.58	6.75	2.55	1.28	1.52	1.59	1.12	2.44	.50	3/4"	#12	³ /8"	6	5.60	2.25	.79	.53
TMWC003	8.15	9.75	3.52	1.50	1.93	1.50	1.62	3.94	1.28	1 ¹ /2"	#24	1"	12	8.94	4.00	-	.63
TMWC004	18.15	9.75	3.52	1.50	1.93	1.50	1.62	3.94	1.28	1 ¹ /2"	#24	1"	12	8.94	4.00	-	.63
TMWC005	12.50	10.38	5.05	1.62	2.05	2.16	2.38	4.68	1.19	1 ¹ /2"	#24	1 ¹ /2"	12	9.62	4.38	1.12	.66
TMWC006	24.50	10.38	5.05	1.62	2.05	2.16	2.38	4.68	1.19	1 ¹ /2"	#24	1 ¹ /2"	12	9.62	4.38	1.12	.66

All all dimensions in inches. Tank gasket is included. BSPF Threads are 55°Full Form Whitworth. NOTE: We reserve the right to make reasonable design changes without notice. Certified drawings are available upon request.

SPECIFICATIONS

Materials	Ratings	Maximum Flow Rates			How To Order				
Shell - Steel Tubes - Copper	Operating Pressure - PSI Shellside - 75	Model	Shell Side	Tube Side	• •				
Fins - Aluminum	Tubeside- 150	Size	(GPM)	(GPM)	Model Series	Connections	Surae-Cushion®		
Tubesheets - Steel	Test Pressure - PSI	TMUC001/002	(01 101)		TMWC001	P – NPT Conn	Omit - No Surge-Cushion®		
Baffles - Steel	Shellside - 75	TMWC001/002	20	0	111110 C001	$\Gamma = \Gamma \Gamma \Gamma Collin.$	"D" Surge Cushion®		
End Bonnets - Cast Iron	Tubeside- 150	TMWC003/004	65	12		S = SAE OII COIII.	K – Surge-Cusmon [®]		
Gaskets - Nitrile Rubber/	Max. Temperature - 250°F	TMWC005/006	100	28	TMWC006	M = Metric Conn.			
Cellulose Fiber									

Cooler Performance Curves

Cooler Selection Procedure

- 1. Curves are based on a 40°F approach temperature, a 2:1 oil to water ratio and an average oil viscosity of 100 SSU. Example: oil leaving cooler at 125°F with 85°F cooling water (125°F - 85°F = 40°F). The 2:1 oil to water ratio means that for every GPM of oil circulated, a minimum of 1/2 GPM of water must be circulated to obtain the curve results.
- 2. Oil pressure drop coding: $\bullet = 5$ PSI, $\blacksquare = 10$ PSI. Curves having no pressure drop symbol indicate that the oil pressure drop is less than 5 PSI to the highest oil flow rate for that curve. Multiply curve oil pressure drop by Correction B.
- 3. Corrections for approach temperature and oil viscosity:
- **HP** Heat Removed in Cooler = **HP** actual **x** $\left\{ \frac{40^{\circ}\text{F}}{\text{Oil out}^{\circ}\text{F} \cdot \text{Water in }^{\circ}\text{F}} \right\}$ **x** Correction A

· In-tank design minimizes space requirements and reduces plumbing

- · Internal aluminum fins dramatically increase performance
- · Removable end bonnets allow water
- Steel shell for high strength
- · T1 & T2 Radii represent required reservoir cutout

VISCOSITY CORRECTIONS

Avg. Oil SSU	А	В
50	0.84	0.6
100	1.00	1.0
200	1.14	2.0
300	1.24	3.1
400	1.31	4.1
500	1.37	5.1